login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that c(k,0) < c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of sqrt(2).
4

%I #8 Apr 21 2021 03:49:27

%S 1,3,4,5,6,7,8,9,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

%T 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,

%U 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91

%N Numbers k such that c(k,0) < c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of sqrt(2).

%C This sequence together with A293725 and A293728 partition the nonnegative integers.

%H Clark Kimberling, <a href="/A293727/b293727.txt">Table of n, a(n) for n = 1..10000</a>

%t z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]];

%t t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];

%t Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]

%t u = Select[Range[z], c[0, #] == c[1, #] &] (* A293725 *)

%t u/2 (* A293726 *)

%t Select[Range[z], c[0, #] < c[1, #] &] (* A293727 *)

%t Select[Range[z], c[0, #] > c[1, #] &] (* A293728 *)

%Y Cf. A004539, A002103, A293726, A293727, A293728.

%K nonn,easy,base

%O 1,2

%A _Clark Kimberling_, Oct 18 2017