The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293710 Expansion of x^2/(1 - 4*x - 4*x^2 - x^3). 0
 0, 0, 1, 4, 20, 97, 472, 2296, 11169, 54332, 264300, 1285697, 6254320, 30424368, 148000449, 719953588, 3502240516, 17036776865, 82876023112, 403153440424, 1961154631009, 9540108308844, 46408205199836, 225754408665729, 1098190563771104, 5342188094947168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This sequence is a generalization of the tribonacci sequence wherein the coefficients of the terms on the right hand side of the recurrence relation are terms of (a + b)^2. Thus we have a(n+2) = p^2 a(n+1) + 2*p*m a(n) + m^2 a(n-1), with a(0)=0, a(1)=0, a(2)=1. The further extension is a q-bonacci sequence (qB)n whose recurrence relation has terms on the right hand side with coefficients which are terms of (a + b)^q. For this sequence p = 2 and m = 1: a(n+2) = 4*a(n+1) + 4*a(n) + a(n-1). REFERENCES S. Arolkar, Y. S. Valaulikar, Python Programming Language Codes For Some Properties Of Fibonacci Sequence Extensions, published in Conference Proceedings ISBN: 978-81-930850-2-8, pp. 85-90. LINKS S. Arolkar, Y. S. Valaulikar, On an Extension of Fibonacci Sequence, Bulletin of Marathwada Mathematical Society, Aurangabad, Maharashtra, India 17(2)(2016), 1-8. S. Arolkar, Y. S. Valaulikar, On a B-q bonacci Sequence, International Journal of Advances in Mathematics volume 2017 (1), 1-8, 2017. Index entries for linear recurrences with constant coefficients, signature (4,4,1). FORMULA G.f.: x^2/(1-x*(2+x)^2). a(n+2) = 4*a(n+1) + 4*a(n) + a(n-1). PROG # (Python) # also generates the terms a(n), where n < 0. For example a(-1) = 1, a(-2)= -4, ... def a(n):     if n == 0:        return 0     elif n == 1:        return 0     elif n== 2:        return 1     elif n < 0:        return expand(a(n+3)- 4*a(n+2) - 4*a(n+1))     else:        return expand(4*a(n-1) + 4*a(n-2) + a(n-3)) m1=input(' Enter the first term to be generated') m2=input(' Enter the last term to be generated') for i in range (m1, (m2)+1):     print a(i) CROSSREFS Sequence in context: A151254 A232493 A240778 * A098225 A073532 A178874 Adjacent sequences:  A293707 A293708 A293709 * A293711 A293712 A293713 KEYWORD nonn,easy AUTHOR S. Arolkar and Y S Valaulikar, Nov 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 23:16 EDT 2021. Contains 345445 sequences. (Running on oeis4.)