login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293710
Expansion of x^2/(1 - 4*x - 4*x^2 - x^3).
0
0, 0, 1, 4, 20, 97, 472, 2296, 11169, 54332, 264300, 1285697, 6254320, 30424368, 148000449, 719953588, 3502240516, 17036776865, 82876023112, 403153440424, 1961154631009, 9540108308844, 46408205199836, 225754408665729, 1098190563771104, 5342188094947168
OFFSET
0,4
COMMENTS
This sequence is a generalization of the tribonacci sequence wherein the coefficients of the terms on the right hand side of the recurrence relation are terms of (a + b)^2. Thus we have a(n+2) = p^2 a(n+1) + 2*p*m a(n) + m^2 a(n-1), with a(0)=0, a(1)=0, a(2)=1. The further extension is a q-bonacci sequence (qB)n whose recurrence relation has terms on the right hand side with coefficients which are terms of (a + b)^q. For this sequence p = 2 and m = 1: a(n+2) = 4*a(n+1) + 4*a(n) + a(n-1).
REFERENCES
S. Arolkar and Y. S. Valaulikar, Python Programming Language Codes For Some Properties Of Fibonacci Sequence Extensions, published in Conference Proceedings ISBN: 978-81-930850-2-8, pp. 85-90.
LINKS
S. Arolkar and Y. S. Valaulikar, On an Extension of Fibonacci Sequence, Bulletin of Marathwada Mathematical Society, Aurangabad, Maharashtra, India 17(2)(2016), 1-8.
S. Arolkar and Y. S. Valaulikar, On a B-q bonacci Sequence, International Journal of Advances in Mathematics volume 2017 (1), 1-8, 2017.
FORMULA
G.f.: x^2/(1-x*(2+x)^2).
a(n+2) = 4*a(n+1) + 4*a(n) + a(n-1).
PROG
(Python)
from sympy import expand
# also generates the terms a(n), where n < 0. For example a(-1) = 1, a(-2)= -4, ...
def a(n):
if n == 0:
return 0
elif n == 1:
return 0
elif n== 2:
return 1
elif n < 0:
return expand(a(n+3)- 4*a(n+2) - 4*a(n+1))
else:
return expand(4*a(n-1) + 4*a(n-2) + a(n-3))
m1 = 0
m2 = 25
for i in range (m1, (m2)+1):
print(a(i), end=', ')
CROSSREFS
Sequence in context: A151254 A232493 A240778 * A098225 A073532 A178874
KEYWORD
nonn,easy
AUTHOR
S. Arolkar and Y S Valaulikar, Nov 07 2017
STATUS
approved