Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 May 27 2024 02:21:31
%S 2,5,21,23,47,75,107,110,188,261,617,872,965,2735,10145,12572,13364,
%T 14570,195350
%N Numbers k such that (11*10^k - 137)/9 is prime.
%C For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 2 followed by the digits 07 is prime (see Example section).
%C a(20) > 2*10^5.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 12w07</a>.
%e 2 is in this sequence because (11*10^2 - 137)/9 = 107 is prime.
%e Initial terms and associated primes:
%e a(1) = 2, 107;
%e a(2) = 5, 122207;
%e a(3) = 21, 1222222222222222222207;
%e a(4) = 23, 122222222222222222222207;
%e a(5) = 47, 122222222222222222222222222222222222222222222207; etc.
%t Select[Range[2, 100000], PrimeQ[(11*10^# - 137)/9] &]
%o (PARI) isok(k) = isprime((11*10^k - 137)/9); \\ _Michel Marcus_, Nov 15 2017
%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K nonn,more,hard
%O 1,1
%A _Robert Price_, Nov 15 2017
%E a(19) from _Robert Price_, Jan 26 2018