login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293680
Let P be the sequence of distinct lattice points defined by the following rules: P(1) = (0,0), P(2) = (1,0), and for any i < j < k, P(k) does not lie on the vector (P(i), P(j)), and for any n > 2, P(n) is the closest lattice point to P(n-1) such that the angle of the vectors (P(n-2), P(n-1)) and (P(n-1), P(n)), say t, satisfies 0 < t < Pi, and in case of a tie, minimize the angle t; a(n) = X-coordinate of P(n).
3
0, 1, 1, 0, -1, -1, 0, 2, 2, 1, 0, -1, -2, -2, -1, 1, 3, 3, 2, 1, -1, -2, -3, -3, -2, -1, 1, 2, 4, 4, 3, 2, 0, -3, -4, -4, -3, -2, -1, 1, 2, 3, 4, 4, 3, 1, -2, -5, -5, -4, -5, -6, -6, -5, -4, -2, -1, 1, 2, 3, 0, 0, 1, 2, 3, 4, 5, 5, 4, 3, 1, -2, -7, -7, -6, -7
OFFSET
1,8
COMMENTS
See A293681 for the corresponding Y-coordinates.
The following diagram depicts the angle t cited in the name:
. P(n)* .
. | t .
. | .
. | .
. |.
. P(n-1)*
. /
. /
. P(n-2)*
This sequence has building features in common with A293539.
The study of the first thousand dots shows an alternation of apparently chaotic phases and regular phases where a pattern repeats itself; unlike Langton's ant, this repetitive behavior doesn't last long. It is unknown if eventually a periodic pattern repeating itself infinitely emerges.
EXAMPLE
See representation of first points in Links section.
PROG
(PARI) See Links section.
CROSSREFS
Sequence in context: A015504 A055892 A293772 * A293539 A292469 A357701
KEYWORD
sign,look
AUTHOR
Rémy Sigrist, Oct 14 2017
STATUS
approved