login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the greatest integer k such that k/Fibonacci(n) < 4/5.
4

%I #10 Jul 07 2024 12:50:45

%S 0,0,0,1,2,4,6,10,16,27,44,71,115,186,301,488,789,1277,2067,3344,5412,

%T 8756,14168,22925,37094,60020,97114,157134,254248,411383,665632,

%U 1077015,1742647,2819662,4562309,7381972,11944281,19326253,31270535,50596788,81867324

%N a(n) is the greatest integer k such that k/Fibonacci(n) < 4/5.

%H Clark Kimberling, <a href="/A293671/b293671.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, -1, -2, 2, 1, -3, -1, 3, 0, -2, 1, 2, -1, -1)

%F G.f.: (x^3 (1 + x - x^3 + x^10))/((-1 + x) (-1 + x + x^2) (1 + x + x^2 + x^3 + x^4) (1 - x^2 + x^4 - x^6 + x^8)).

%F a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + 2 a(n-5) + a(n-6) - 3 a(n-7) - a(n-8) + 3 a(n-9) - 2 a(n-11) + a(n-12) + 2 a(n-13) - a(n-14) - a(n-15) for n >= 16.

%F a(n) = floor(4*Fibonacci(n)/5).

%F a(n) = A293672(n) - 1 for n > 0.

%t z = 120; r = 4/5; f[n_] := Fibonacci[n];

%t Table[Floor[r*f[n]], {n, 0, z}]; (* A293671 *)

%t Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293672 *)

%t Table[Round[r*f[n]], {n, 0, z}]; (* A293673 *)

%t LinearRecurrence[{1,2,-1,-2,2,1,-3,-1,3,0,-2,1,2,-1,-1},{0,0,0,1,2,4,6,10,16,27,44,71,115,186,301},50] (* _Harvey P. Dale_, Jul 07 2024 *)

%Y Cf. A000045, A293672, A293673.

%K nonn,easy

%O 0,5

%A _Clark Kimberling_, Oct 15 2017