Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #80 Jan 18 2019 04:40:05
%S 5,211,4327,4547,25523,81611,966109,1654111,3851587,1895479,66407189,
%T 134965049,129312889,425845151,35914507,504365461,2400397969,
%U 8490141637,8429770031,20416021309,23555107819,23912414437
%N a(n) is the smallest prime number whose a056240-type is n (see Comments).
%C For a prime p >= 5 whose prime-index is m, the a056240-type of p is defined to be the unique integer k such that A288814(p) = prime(m-k)*A056240(prime(m)-prime(m-k)).
%C In other words, k is such that prime(n-k) is the greatest prime divisor of the smallest composite number whose sum of prime factors (taken with multiplicity) is prime(n).
%C The sequence lists the smallest prime of each successive a056240-type.
%C In the Examples section, the a056240-type k (=a(k)) of a prime p = prime(m) is indicated by p ~ k(g1,g2,...,gk) where gi = prime(m - i + 1) - prime(m - i). See also A295185.
%C For the values of the a056240-types of the primes 2, 3, 5, 7, ... see A299912. - _N. J. A. Sloane_, Mar 10 2018
%C a(20), a(21) > 14 * 10^9. Conjecture: a(k) > 14 * 10^9 for k > 22. - _David A. Corneth_, Mar 25 2018
%C a(20), a(21) computed on the basis of the above conjecture. Note that A321983 records the smallest composite number whose sum of prime divisors (with repetition) is a(n). - _David James Sycamore_, Nov 30 2018
%C a(23)..a(25) > 45.8 * 10^9. - _David A. Corneth_, Dec 02 2018
%H David A. Corneth, <a href="/A293652/a293652.gp.txt">PARI program</a>
%e a(1) = 5 since 6 = 3 * 2, the smallest composite number whose prime divisors add to 5, is a multiple of 3, the greatest prime < 5, so k=1; 5 ~ 1(2).
%e a(2) = 211 since 6501 = 3 * 11 * 197, the smallest composite whose prime divisors add to 211, and 197 < 199 < 211 is the second prime below 211, so k=2, and 211 ~ 2(12,2), and since no smaller prime has this property, a(2)=211.
%e a(3) = 4327 since 526809 = 3 * 41 * 4283, the smallest composite whose prime divisors add to 4327, and 4283 < 4289 < 4297 < 4327 is the third prime below 4327, so k=3, 4327 ~ 3(30,8,6) and since no smaller prime has this property, a(3)=4327. Likewise,
%e a(4) = 4547 ~ 4(24, 4, 2, 4),
%e a(5) = 25523 ~ 5(52, 2, 6, 6, 4),
%e a(6) = 81611 ~ 6(42, 6, 4, 6, 2, 4),
%e a(7) = 966109 ~ 7(68, 12, 16, 2, 22, 6, 14),
%e a(8) = 1654111 ~ 8(54, 14, 4, 6, 2, 4, 6, 2),
%e a(9) = 3851587 ~ 9(128, 16, 12, 2, 6, 10, 14, 10, 2),
%e a(10) = 1895479 ~ 10(120, 2, 6, 30, 4, 30, 14, 10, 2, 12),
%e a(11) = 66407189 ~ 11(120, 6, 6, 16, 14, 6, 4, 8, 10, 2, 4),
%e a(12) = 134965049 ~ 12(138, 10, 2, 22, 18, 20, 6, 12, 18, 16, 8, 10),
%e a(13) = 129312889 ~ 13(98, 60, 22, 18, 8, 4, 18, 12, 38, 24, 6, 4, 8),
%e a(14) = 425845151 ~ 14(148, 2, 42, 16, 50, 24, 12, 6, 4, 20, 6, 48, 10, 12),
%e a(15) = 35914859 ~ 15(126, 82, 8, 4, 18, 12, 8, 4, 14, 6, 16, 8, 6, 30, 10),
%e a(16) = 504365461 ~ 16(122, 42, 10, 14, 36, 4, 6, 6, 12, 48, 2, 6, 10, 20, 6, 6),
%e a(17) = 2400397969 ~ 17(122, 58, 8, 4, 18, 36, 2, 4, 6, 32, 10, 2, 16,12,18,32,12),
%e a(18) = 8490141637 ~ 18(126, 2, 82, 8, 52, 20, 34, 2, 10, 24, 8, 6,34,2,6,28,24,2),
%e a(19) = 8429770031 ~ 19(148, 26, 16, 18, 12, 2, 18, 18, 10,20,4,2,6,18,6,4,2,18,4),
%e a(20) = 20416021309 ~ 20(122, 4, 2, 64, 20, 40, 6, 12, 12, 20, 10, 6, 8, 10, 30, 2, 10, 38, 22, 140,
%e a(21) = 23555107819 ~ 21(192, 20, 156, 30, 18, 10, 2, 12, 58, 12, 12, 26, 28, 32, 4, 6, 12, 2, 6, 22, 2),
%e a(22) = 23912414437 ~ 22(344, 4, 12, 14, 40, 2, 4, 18, 2, 36, 10, 12, 2, 10, 26, 10, 24, 14, 40, 30, 14, 12).
%o (PARI) isok(k, n) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]) == n;
%o snumbr(n) = my(k=2); while(!isok(k, n), k++); k; /* A056240 */
%o scompo(n) = forcomposite(k=4, , if (isok(k, n), return(k))); /* A288814 */
%o a(n) = {forprime(p=5,,ip = primepi(p); if (ip > n, x = scompo(p); fmax = vecmax(factor(x)[,1]); ifmax = primepi(fmax); if (ip - ifmax == n, y = fmax*snumbr(p - fmax;); if (y == x, return (p);););););} \\ _Michel Marcus_, Feb 17 2018
%o (PARI) \\ see Corneth link
%Y Cf. A056240, A288814, A289993, A295185, A299912, A300334, A300359, A321983.
%K nonn,more,hard
%O 1,1
%A _David James Sycamore_, Feb 06 2018
%E a(7)-a(10) from _Michel Marcus_, Feb 23 2018
%E Name changed by _N. J. A. Sloane_, Mar 10 2018
%E a(11)-a(19) from _David A. Corneth_, Mar 24 2018, Mar 25 2018
%E a(20)-a(21) from _David James Sycamore_, Nov 30 2018
%E a(22) from _David A. Corneth_, Dec 02 2018