

A293563


a(n) = k is a number such that A007535(k), the smallest pseudoprime to base k ( > k), is the nth Carmichael number.


0



355, 348, 765, 1092, 2035, 4457, 6855, 8253, 12820, 22270, 33687, 39171, 46860, 52087, 54027, 64917, 91703, 97860, 115971, 144291, 154717, 172267, 222477, 259098, 278967, 290820, 304878, 320929, 368305, 383656, 402333, 459571, 489481, 504165, 532378, 624325
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Pairs of consecutive terms that are not monotonic (a(n) > a(n+1)): (355, 348), (624325, 611289), (778947, 761178), ... corresponding to the Carmichael numbers (1105, 561), (656601, 658801), (825265, 838201), ...


LINKS

Table of n, a(n) for n=1..36.


EXAMPLE

a(1) = 355 since 355 is the least k such that A007535(k) = 561 = A002997(1), the first Carmichael number.
a(2) = 348 since 348 is the least k such that A007535(k) = 1105 = A002997(2), the second Carmichael number.


CROSSREFS

Cf. A002997, A007535, A293512.
Sequence in context: A176197 A157668 A250157 * A241960 A221450 A232298
Adjacent sequences: A293560 A293561 A293562 * A293564 A293565 A293566


KEYWORD

nonn


AUTHOR

Amiram Eldar, Oct 12 2017


STATUS

approved



