login
A293544
a(n) = round(Fibonacci(n)/3).
2
0, 0, 0, 1, 1, 2, 3, 4, 7, 11, 18, 30, 48, 78, 126, 203, 329, 532, 861, 1394, 2255, 3649, 5904, 9552, 15456, 25008, 40464, 65473, 105937, 171410, 277347, 448756, 726103, 1174859, 1900962, 3075822, 4976784, 8052606, 13029390, 21081995, 34111385, 55193380
OFFSET
0,6
COMMENTS
a(n) is the integer k that minimizes | k/Fibonacci(n) - 1/3 |.
FORMULA
G.f.: -(x^2/((-1 + x + x^2) (1 + x^4))).
a(n) = a(n-1) + a(n-2) - a(n-4) + a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
Table[Round[Fibonacci[n]/3], {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
Round[Fibonacci[Range[0, 20]]/3] (* Eric W. Weisstein, Feb 08 2025 *)
LinearRecurrence[{1, 1, 0, -1, 1, 1}, {0, 0, 1, 1, 2, 3}, {0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
CoefficientList[Series[-(x^3/((-1 + x + x^2) (1 + x^4))), {x, 0, 20}], x] (* Eric W. Weisstein, Feb 08 2025 *)
Table[(Fibonacci[n] + (-1)^n Sin[n Pi/4] (Cos[n Pi/2] + Sqrt[2] Sin[n Pi/2]))/3, {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
CROSSREFS
Cf. A000045 (Fibonacci(n)).
Cf. A004696 (floor(Fibonacci(n)/3)).
Cf. A293543 (ceiling(Fibonacci(n)/3)).
Sequence in context: A080023 A169985 A254729 * A080074 A317767 A018064
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Oct 12 2017
STATUS
approved