OFFSET
0,6
COMMENTS
a(n) is the integer k that minimizes | k/Fibonacci(n) - 1/3 |.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, -1, 1, 1).
FORMULA
G.f.: -(x^2/((-1 + x + x^2) (1 + x^4))).
a(n) = a(n-1) + a(n-2) - a(n-4) + a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
Table[Round[Fibonacci[n]/3], {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
Round[Fibonacci[Range[0, 20]]/3] (* Eric W. Weisstein, Feb 08 2025 *)
LinearRecurrence[{1, 1, 0, -1, 1, 1}, {0, 0, 1, 1, 2, 3}, {0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
CoefficientList[Series[-(x^3/((-1 + x + x^2) (1 + x^4))), {x, 0, 20}], x] (* Eric W. Weisstein, Feb 08 2025 *)
Table[(Fibonacci[n] + (-1)^n Sin[n Pi/4] (Cos[n Pi/2] + Sqrt[2] Sin[n Pi/2]))/3, {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Oct 12 2017
STATUS
approved