Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 11 2017 10:24:20
%S 1,1,2,4,6,4,12,30,24,8,52,144,156,80,16,240,760,1020,680,240,32,1188,
%T 4440,6720,5640,2640,672,64,6804,26712,47040,45640,26880,9408,1792,
%U 128,38960,175392,338016,376320,261520,115584,31360,4608,256
%N Triangle read by rows, coefficients of polynomials in t = log(x) of the n-th derivative of x^(x^2), evaluated at x = 1. T(n, k) with n >= 0 and 0 <= k <= n.
%e Triangle starts:
%e 0: [ 1]
%e 1: [ 1, 2]
%e 2: [ 4, 6, 4]
%e 3: [ 12, 30, 24, 8]
%e 4: [ 52, 144, 156, 80, 16]
%e 5: [ 240, 760, 1020, 680, 240, 32]
%e 6: [1188, 4440, 6720, 5640, 2640, 672, 64]
%e 7: [6804, 26712, 47040, 45640, 26880, 9408, 1792, 128]
%e ...
%e For n = 3, the 3rd derivative of x^(x^2) is p(3,x,t) = 8*t^3*x^3*x^(x^2) + 12*t^2*x^3*x^(x^2) + 6*t*x^3*x^(x^2) + 12*t^2*x*x^(x^2) + x^3*x^(x^2) + 24*t*x*x^(x^2) + 9*x*x^(x^2) + 2*x^(x^2)/x where log(x) is substituted by t. Evaluated at x = 1: p(3,1,t) = 12 + 30*t + 24*t^2 + 8*t^3 with coefficients [12, 30, 24, 8].
%p # Function dx in A293472.
%p ListTools:-Flatten([seq(dx(2, n), n=0..8)]);
%t (* Function dx in A293472. *)
%t Table[dx[2, n], {n, 0, 7}] // Flatten
%Y T(n, 0) = A215524, T(n, n) = A000079.
%Y More generally, consider the n-th derivative of x^(x^m).
%Y A293472 (m=1), this seq. (m=2), A293474 (m=3).
%Y Cf. A290268.
%K sign,tabl
%O 0,3
%A _Peter Luschny_, Oct 10 2017