login
Numbers k such that (728*10^k - 71)/9 is prime.
0

%I #16 May 26 2024 14:58:10

%S 0,2,5,6,11,14,41,47,51,84,164,228,293,1178,1212,1292,2099,2694,4446,

%T 7382,13638,39428,40971

%N Numbers k such that (728*10^k - 71)/9 is prime.

%C For k > 0, numbers k such that the digits 80 followed by k-1 occurrences of the digit 8 followed by the digit 1 is prime (see Example section).

%C a(24) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 808w1</a>.

%e 2 is in this sequence because (728*10^2 - 71)/9 = 8081 is prime.

%e Initial terms and associated primes:

%e a(1) = 0, 73;

%e a(2) = 2, 8081;

%e a(3) = 5, 8088881;

%e a(4) = 6, 80888881;

%e a(5) = 11, 8088888888881; etc.

%t Select[Range[0, 100000], PrimeQ[(728*10^# - 71)/9] &]

%o (PARI) isok(k) = isprime((728*10^k - 71)/9); \\ _Altug Alkan_, Oct 08 2017

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Oct 08 2017