login
A293389
Expansion of ((eta(q)eta(q^3))/eta(q^2)^2)^2 in powers of q.
2
1, -2, 3, -8, 15, -24, 39, -64, 102, -152, 225, -336, 492, -700, 987, -1392, 1941, -2664, 3630, -4936, 6660, -8896, 11817, -15648, 20604, -26942, 35070, -45512, 58800, -75576, 96777, -123568, 157206, -199200, 251613, -316992, 398148, -498460, 622356, -775216
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{k>0} (((1 - x^k)*(1 - x^(3*k)))/(1 - x^(2*k))^2)^2.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2017
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[(1 - x^(3*k))^2 / ((1 + x^k)^4 * (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2017 *)
CROSSREFS
Main diagonal of A293388.
Sequence in context: A365413 A174019 A356371 * A128035 A003473 A095373
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 08 2017
STATUS
approved