login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least integer k such that k/2^n > e^2.
3

%I #7 Nov 23 2024 17:51:12

%S 8,15,30,60,119,237,473,946,1892,3784,7567,15133,30266,60532,121063,

%T 242125,484250,968499,1936997,3873994,7747987,15495974,30991948,

%U 61983896,123967791,247935581,495871161,991742322,1983484644,3966969287,7933938574,15867877147

%N Least integer k such that k/2^n > e^2.

%H Clark Kimberling, <a href="/A293360/b293360.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = ceiling(r*2^n), where r = e^2.

%F a(n) = A293359(n) + 1.

%t z = 120; r = E^2;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293359 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293360 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293361 *)

%Y Cf. A072334, A293359, A293361.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 11 2017