login
Least integer k such that k/2^n > e.
2

%I #5 Oct 11 2017 09:15:14

%S 3,6,11,22,44,87,174,348,696,1392,2784,5568,11135,22269,44537,89073,

%T 178146,356291,712582,1425163,2850326,5700651,11401301,22802601,

%U 45605202,91210403,182420806,364841612,729683223,1459366445,2918732889,5837465778,11674931555

%N Least integer k such that k/2^n > e.

%H Clark Kimberling, <a href="/A293337/b293337.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = ceiling(e*2^n).

%F a(n) = A027437(n) + 1.

%t z = 120; r = E;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A027437 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293337 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293338 *)

%Y Cf. A001113, A027437, A293338, A293340.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 10 2017