login
Greatest integer k such that k/2^n < sqrt(1/5).
3

%I #5 Oct 10 2017 10:32:42

%S 0,0,1,3,7,14,28,57,114,228,457,915,1831,3663,7327,14654,29308,58617,

%T 117234,234468,468937,937874,1875749,3751499,7502999,15005998,

%U 30011996,60023992,120047985,240095970,480191941,960383883,1920767766,3841535533,7683071067

%N Greatest integer k such that k/2^n < sqrt(1/5).

%H Clark Kimberling, <a href="/A293334/b293334.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = floor(r*2^n), where r = sqrt(1/5).

%F a(n) = A293335(n) - 1.

%t z = 120; r = Sqrt[1/5];

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293334 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293335 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293336 *)

%Y Cf. A001633, A293331, A293335, A293336.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Oct 10 2017