login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest integer k such that k/2^n < sqrt(5).
4

%I #9 Jul 29 2022 09:56:56

%S 2,4,8,17,35,71,143,286,572,1144,2289,4579,9158,18317,36635,73271,

%T 146542,293085,586171,1172343,2344687,4689374,9378748,18757497,

%U 37514995,75029990,150059981,300119963,600239927,1200479854,2400959708,4801919417,9603838834

%N Greatest integer k such that k/2^n < sqrt(5).

%H Clark Kimberling, <a href="/A293331/b293331.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = floor(r*2^n), where r = sqrt(5).

%F a(n) = A293332(n) - 1.

%t z = 120; r = Sqrt[5];

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293331 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293332 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293333 *)

%o (Python)

%o from math import isqrt

%o def A293331(n): return isqrt(5*(1<<(n<<1))) # _Chai Wah Wu_, Jul 28 2022

%Y Cf. A001633, A293332, A293333.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 10 2017