login
Greatest integer k such that k/2^n < sqrt(1/3).
3

%I #8 Jan 08 2023 11:42:05

%S 0,1,2,4,9,18,36,73,147,295,591,1182,2364,4729,9459,18918,37837,75674,

%T 151348,302697,605395,1210791,2421582,4843165,9686330,19372660,

%U 38745320,77490641,154981282,309962565,619925131,1239850262,2479700524,4959401049,9918802098

%N Greatest integer k such that k/2^n < sqrt(1/3).

%H Clark Kimberling, <a href="/A293327/b293327.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = floor(r*2^n), where r = sqrt(1/3).

%F a(n) = A293328(n) - 1.

%t z = 120; r = Sqrt[1/3];

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293327 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293328 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293329 *)

%Y Cf. A002194, A094386, A293328, A293329.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Oct 09 2017

%E Definition and formula corrected by _Clark Kimberling_, Dec 26 2022