login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least integer k such that k/2^n > tau^2, where tau = (1+sqrt(5))/2 = golden ratio.
3

%I #9 Sep 08 2022 08:46:19

%S 3,6,11,21,42,84,168,336,671,1341,2681,5362,10724,21447,42894,85788,

%T 171576,343151,686302,1372604,2745208,5490416,10980831,21961661,

%U 43923322,87846644,175693287,351386574,702773148,1405546296,2811092591,5622185181,11244370362

%N Least integer k such that k/2^n > tau^2, where tau = (1+sqrt(5))/2 = golden ratio.

%H Clark Kimberling, <a href="/A293320/b293320.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = ceiling(r*2^n), where r = (3+sqrt(5))/2.

%F a(n) = A293319(n) + 1.

%t z = 120; r = 1+GoldenRatio;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)

%o (Magma) [Ceiling((2^n*(3+Sqrt(5)))/2): n in [0..33]]; // _Vincenzo Librandi_, Oct 08 2017

%Y Cf. A001622, A293313, A293319, A293321.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 07 2017