login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least integer k such that k/2^n > (1+sqrt(5))/2 (the golden ratio).
4

%I #9 Oct 06 2017 21:35:02

%S 2,4,7,13,26,52,104,208,415,829,1657,3314,6628,13255,26510,53020,

%T 106040,212079,424158,848316,1696632,3393264,6786527,13573053,

%U 27146106,54292212,108584423,217168846,434337692,868675384,1737350767,3474701533,6949403066

%N Least integer k such that k/2^n > (1+sqrt(5))/2 (the golden ratio).

%H Clark Kimberling, <a href="/A293314/b293314.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = ceiling(r*2^n), where r = (1+sqrt(5))/2.

%F a(n) = A293313(n) + 1.

%p A293314:=n->ceil(2^n*(1+sqrt(5))/2): seq(A293314(n), n=0..40); # _Wesley Ivan Hurt_, Oct 06 2017

%t z = 120; r = GoldenRatio;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293313 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293314 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293315 *)

%o (PARI) a(n) = ceil(2^n*(1+sqrt(5))/2) \\ _Altug Alkan_, Oct 06 2017

%Y Cf. A001622, A293313, A293315.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 06 2017