Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 09 2017 06:15:09
%S 3,778,1331,1575,1589,3111,5368,14060,17649,17714,23232,33813,34353,
%T 36234,52936,53391,66375,74544,80938,88945,93475,94905,97470,98434,
%U 156816,180804,207754,229502,238830,267120,274065,357318,367921,400500,406700,411872,418037
%N Numbers k such that k = x + y, k' = x' + y' and k'' = x'' + y'', where k' and k'' are the first and second arithmetic derivatives of k.
%C A226779(n) + 1 are terms of the sequence: for these numbers the relation stands for any following derivative because n = 1 + (n-1), n' = 0 + (n-1)' and n' = (n-1)' by definition. Apart 3, no other prime p can be in the sequence because p = x + y implies p' = 1 = x' + y' that is impossible (for 3 we have 3 = 1 + 2 and 3' = 1 = 1' + 2' = 0 + 1). Similarly, x and y cannot be both primes.
%C Is there any number that admits two or more different partitions?
%H Paolo P. Lava, <a href="/A293252/a293252.txt">List of k, x, and y</a>
%e 1331 = 198 + 1133, 1331' = 363 = 198' + 1133' = 249 + 114, 1331'' = 187 = 198'' + 1133'' = 86 + 101.
%p with(numtheory): P:=proc(q) local a,b,c,k,n,p; for n from 1 to q do
%p for k from 1 to trunc(n/2) do a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]);
%p b:=(n-k)*add(op(2,p)/op(1,p),p=ifactors(n-k)[2]); c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if c=a+b then a:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); b:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); c:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]);
%p if c=a+b then print(n); break; fi; fi; od; od; end: P(10^5);
%t f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[2000], Function[k, Count[IntegerPartitions[k, {2}], _?(And[f@ k == f@ #1 + f@ #2, Nest[f, k, 2] == Nest[f, #1, 2] + Nest[f, #2, 2]] & @@ # &)] > 0]] (* _Michael De Vlieger_, Oct 08 2017 *)
%Y Cf. A003415, A226779.
%K nonn
%O 1,1
%A _Paolo P. Lava_, Oct 04 2017
%E a(25)-a(37) from _Giovanni Resta_, Oct 05 2017