Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 18 2017 00:56:12
%S 1,2,2,2,2,6,2,12,6,6,2,36,2,4,18,12,2,30,2,360,12,10,2,540,6,60,30,
%T 360,2,900,2,120,30,10,12,2700,2,4,180,360,2,540,2,360,450,6,2,5400,4,
%U 120,30,360,2,210,30,5040,12,14,2,1701000,2,84,180,2520,180,1260,2,840,18,12600,2,94500,2,140,180,840,20,18900,2,756000,210,210,2,23814000,30
%N a(n) = Product_{d|n, d<n} A019565(A289813(d)); a product obtained from the 1-digits present in ternary expansions of proper divisors of n.
%H Antti Karttunen, <a href="/A293221/b293221.txt">Table of n, a(n) for n = 1..6561</a>
%F a(n) = Product_{d|n, d<n} A019565(A289813(d)).
%F For all n >= 0, a(3^n) = A002110(n).
%o (PARI)
%o A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from _M. F. Hasler_
%o A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From _Remy Sigrist_
%o A293221(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289813(d)))); m; };
%Y Cf. A019565, A289813, A293214, A293222, A293223 (restricted growth sequence transform), A293226.
%Y Cf. also A290091.
%K nonn,base
%O 1,2
%A _Antti Karttunen_, Oct 03 2017