Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 17 2019 11:59:52
%S 1,4,1,15,1,12,40,16,1,77,92,24,101,28,204,373,1,36,667,40,575,689,
%T 826,48,393,1582,1379,1937,590,60,6101,64,1,5227,3129,9515,1826,76,
%U 4390,12404,11341,84,18361,88,5875,46320,7844,96,1553,33133,38886,50883,25741,108,25507,44993,82265,91449,15835,120,150162,124,19376,390653,1,104015,29394,136,242217,249506,507789,144,210831,148,33079,647187,593029,711482,47101,160
%N L.g.f.: Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).
%C Compare l.g.f. to: Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
%C Here l.g.f. L(x) = Sum_{n>=1} a(n) * x^(2*n-1) / (2*n-1).
%C a(2^n + 1) = 1 for n >= 1 (conjecture).
%H Paul D. Hanna, <a href="/A293129/b293129.txt">Table of n, a(n) for n = 1..2050</a>
%F L.g.f.: Sum_{n=-oo..+oo} (x + x^(2*n-1))^(2*n-1) / (2*n-1) - note the plus sign.
%F L.g.f.: -log(1-x) - Sum_{n=-oo..+oo, n<>0} (x - x^(2*n))^(2*n) / (2*n).
%F L.g.f.: L(x) = P(x) + Q(x) where
%F P(x) = Sum_{n>=1} (x - x^(2*n-1))^(2*n-1) / (2*n-1),
%F Q(x) = Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ).
%e L.g.f.: L(x) = x + 4*x^3/3 + x^5/5 + 15*x^7/7 + x^9/9 + 12*x^11/11 + 40*x^13/13 + 16*x^15/15 + x^17/17 + 77*x^19/19 + 92*x^21/21 + 24*x^23/23 + 101*x^25/25 + 28*x^27/27 + 204*x^29/29 + 373*x^31/31 + x^33/33 + 36*x^35/35 + 667*x^37/37 + 40*x^39/39 + 575*x^41/41 + 689*x^43/43 + 826*x^45/45 + 48*x^47/47 + 393*x^49/49 + 1582*x^51/51 + 1379*x^53/53 + 1937*x^55/55 + 590*x^57/57 + 60*x^59/59 +...
%e such that L(x) = Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).
%e The coefficient of x^(2^n+1)/(2^n+1) in L(x) for n>=1 begins:
%e [4, 1, 1, 1, 1, 1, 1, 1, 1, ...],
%e and it appears that a(k) = 1 only at k = 1 and k = 2^n + 1 (n>=1).
%e We may write L(x) = P(x) + Q(x) where
%e P(x) = (x - x) + (x - x^3)^3/3 + (x - x^5)^5/5 + (x - x^7)^7/7 + (x - x^9)^9/9 + (x - x^11)^11/11 + (x - x^13)^13/13 + (x - x^15)^15/15 + (x - x^17)^17/17 + (x - x^19)^19/19 + (x - x^21)^21/21 +...+ (x - x^(2*n-1))^(2*n-1)/(2*n-1) +...
%e Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
%e Explicitly,
%e P(x) = x^3/3 - 4*x^5/5 + 8*x^7/7 - 11*x^9/9 + x^11/11 + 14*x^13/13 + x^15/15 - 50*x^17/17 + 58*x^19/19 + x^21/21 + x^23/23 - 54*x^25/25 + x^27/27 - 28*x^29/29 + 311*x^31/31 - 340*x^33/33 + x^35/35 + 75*x^37/37 + x^39/39 - 81*x^41/41 + 345*x^43/43 - 44*x^45/45 + x^47/47 - 1427*x^49/49 + 1531*x^51/51 - 52*x^53/53 + 496*x^55/55 - 1253*x^57/57 + x^59/59 + 1343*x^61/61 + x^63/63 - 2924*x^65/65 +...
%e Q(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...
%e The coefficient of x^(2^n+1)/(2^n+1) in P(x) for n>=1 begins:
%e [1, -4, -11, -50, -340, -2924, -169032, -33445208, -21619038032, 1 - A293599(n), ...].
%e The coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1 begins:
%e [3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].
%o (PARI) {a(n) = my(P,Q,Ox = O(x^(2*n+1)));
%o P = sum(m=1,n+1, (x - x^(2*m-1) +Ox)^(2*m-1) / (2*m-1) );
%o Q = sum(m=1,sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
%o (2*n-1)*polcoeff(P + Q, 2*n-1)}
%o for(n=1,80,print1(a(n),", "))
%Y Cf. A293597 (P(x)), A293598 (Q(x)), A293599, A291937.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Oct 11 2017