OFFSET
0,9
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
E.g.f. of column k: exp(x^(k+1)/(x-1)).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = - Sum_{i=k..n-1} (i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k.
EXAMPLE
Square array begins:
1, 1, 1, 1, ...
-1, 0, 0, 0, ...
-1, -2, 0, 0, ...
-1, -6, -6, 0, ...
1, -12, -24, -24, ...
19, 0, -120, -120, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, -add(
A(n-j, k)*binomial(n-1, j-1)*j!, j=1+k..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 30 2017
MATHEMATICA
A[0, _] = 1;
A[n_, k_] /; 0 <= k <= n := A[n, k] = -Sum[A[n-j, k] Binomial[n-1, j-1] j!, {j, k+1, n}];
A[_, _] = 0;
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
AUTHOR
Seiichi Manyama, Sep 30 2017
STATUS
approved