login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (203*10^k + 1)/3 is prime.
0

%I #12 May 25 2024 17:38:15

%S 1,5,12,17,21,23,25,29,109,168,195,327,417,461,1991,3512,3955,4239,

%T 6228,24317,91613,131457,152143,159381,162689

%N Numbers k such that (203*10^k + 1)/3 is prime.

%C For k > 0, numbers k such that the digits 67 followed by k-1 occurrences of the digit 6 followed by the digit 7 is prime (see Example section).

%C a(26) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 676w7</a>.

%e 5 is in this sequence because (203*10^5 + 1)/3 = 6766667 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 677;

%e a(2) = 5, 6766667;

%e a(3) = 12, 67666666666667;

%e a(4) = 17, 6766666666666666667;

%e a(5) = 21, 67666666666666666666667; etc.

%t Select[Range[0, 100000], PrimeQ[(203*10^# + 1)/3] &]

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Sep 28 2017

%E a(22)-a(25) from _Robert Price_, Mar 22 2020