login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 15 applications of 'Reverse and Subtract' lead to n, whereas fewer than 15 applications do not lead to n.
3

%I #9 Jan 05 2025 19:51:41

%S 10695314508256806604321090888649339244708568530399,

%T 11787342277647023379656208735392766826312885522179,

%U 14638655404662283607788118901219361883250644206458,26730889210860738952361172793674105293199801097128

%N Numbers n such that 15 applications of 'Reverse and Subtract' lead to n, whereas fewer than 15 applications do not lead to n.

%C There are 15 fifty-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 10695314508256806604321090888649339244708568530399, 26730889210860738952361172793674105293199801097128, 29899105876561459824028272726867015583422139910097, 49102887245877091252834454555175879833145710289795, 55448121688278511195278554322651878413601497706634, 68315444154984874470735536347381553142144945548514, 88608272072487486790367718123691321620571972829202) or any number of 9's (for the other eight terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - _Ray Chandler_, Oct 15 2017

%H Ray Chandler, <a href="/A292993/b292993.txt">Table of n, a(n) for n = 1..15</a>

%H J. H. E. Cohn, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/28-2/cohn.pdf">Palindromic differences</a>, Fibonacci Quart. 28 (1990), no. 2, 113-120.

%F n = f^15(n), n <> f^k(n) for k < 15, where f: x -> |x - reverse(x)|.

%e 10695314508256806604321090888649339244708568530399 -> 88608272072487486790367718123691321620571972829202 -> 68315444154984874470735536347381553142144945548514 -> 26730889210860738952361172793674105293199801097128 -> 55448121688278511195278554322651878413601497706634 -> 11787342277647023379656208735392766826312885522179 -> 85335216543715843349697571530304565248364338856532 -> 61769333197331586809394053950610230396629777603174 -> 14638655404662283607788118901219361883250644206458 -> 70821589200576532783422862287551276343389811477183 -> 32644177302242165567844635465112552775889512964376 -> 34702744296615559953311818179764003348330864180247 -> 39505402506768770093485363631571992203338380540496 -> 29899105876561459824028272726867015583422139910097 -> 49102887245877091252834454555175879833145710289795.

%Y Cf. A072142, A072143, A072718, A072719, A215669, A292634, A292635, A292846, A292856, A292857, A292858, A292859, A292992.

%K nonn,base,changed

%O 1,1

%A _Ray Chandler_, Sep 28 2017