Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 06 2017 21:34:21
%S 1,2,5,3,8,10,4,12,16,17,6,15,22,26,23,7,20,30,35,36,31,9,25,38,46,50,
%T 47,39,11,29,45,58,64,65,59,48,13,34,54,70,78,84,79,71,56,14,41,63,83,
%U 95,103,104,97,86,67,18,44,73,94,113,123,127,124,115,99
%N Rectangular array by antidiagonals: T(n,m) = rank of n*(Pi + m) when all the numbers k*(Pi+h), for k >= 1, h >= 0, are jointly ranked.
%C Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.
%H Clark Kimberling, <a href="/A292965/b292965.txt">Antidiagonals n=1..60, flattened</a>
%F T(n,m) = Sum_{k=1...[n + m*n/Pi]} [1 - Pi + n*(Pi + m)/k], where [ ]=floor.
%F Northwest corner:
%F 1 2 3 4 6 7
%F 5 8 12 15 20 25
%F 10 16 22 30 38 45
%F 17 26 35 46 58 70
%F 23 36 50 64 78 95
%F 31 47 65 84 103 123
%F 39 59 79 104 127 153
%F The numbers k*(Pi+h), approximately:
%F (for k=1): 3.141 4.141 5.141 ...
%F (for k=2): 6.283 8.283 10.283 ...
%F (for k=3): 9.424 12.424 15.424 ...
%F Replacing each by its rank gives
%F 1 2 3
%F 5 8 12
%F 10 16 22
%t r = Pi; z = 12;
%t t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}];
%t u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u] (* A292965 array *)
%t Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten (* A292965 sequence *)
%Y Cf. A182801.
%K nonn,easy,tabl
%O 1,2
%A _Clark Kimberling_, Oct 06 2017