login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of quasitrivial semigroups on an arbitrary n-element set.
8

%I #38 Jun 12 2024 12:06:10

%S 1,1,4,20,138,1182,12166,146050,2003882,30930734,530477310,

%T 10007736906,205965058162,4592120925862,110259944144486,

%U 2836517343551714,77836238876829882,2269379773783175454,70057736432648552782,2282895953541692345722

%N Number of quasitrivial semigroups on an arbitrary n-element set.

%C Number of associative and quasitrivial binary operations on {1,...,n}. Convention a(0)=1.

%H G. C. Greubel, <a href="/A292932/b292932.txt">Table of n, a(n) for n = 0..410</a>

%H Miguel Couceiro, Jimmy Devillet, and Jean-Luc Marichal, <a href="http://arxiv.org/abs/1709.09162">Quasitrivial semigroups: characterizations and enumerations</a>, arXiv:1709.09162 [math.RA], 2017.

%H Jimmy Devillet, <a href="https://arxiv.org/abs/1712.07856">Bisymmetric and quasitrivial operations: characterizations and enumerations</a>, arXiv:1712.07856 [math.RA], 2017.

%H Jimmy Devillet and Miguel Couceiro, <a href="http://orbilu.uni.lu/handle/10993/39720">Characterizations and enumerations of classes of quasitrivial n-ary semigroups</a>, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).

%H Jimmy Devillet, Jean-Luc Marichal, and Bruno Teheux, <a href="https://arxiv.org/abs/1811.11113">Classifications of quasitrivial semigroups</a>, arXiv:1811.11113 [math.RA], 2018.

%H Amya Luo, <a href="https://math.dartmouth.edu/theses/undergrad/2024/Luo-thesis.pdf">Pattern Avoidance in Nonnesting Permutations</a>, Undergraduate Thesis, Dartmouth College (2024). See p. 16.

%F E.g.f.: 1/(3 + x - 2*exp(x)).

%F Recurrence: a(0) = 1, a(n+1) = (n+1)*a(n) + 2*Sum_{k=0...n-1} binomial(n+1,k)*a(k).

%F Explicit form: a(n) = Sum_{i=0...n} Sum_{k=0...n-i} 2^i * (-1)^k * binomial(n,k) * S2(n-k,i) * (i+k)!, where S2(n,k) are the Stirling numbers of the second kind.

%F a(n) ~ n! / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)) = 3.5830738760366909976807989989303134394318270218566... - _Vaclav Kotesovec_, Sep 27 2017

%t With[{m=30}, CoefficientList[Series[1/(3+x-2*Exp[x]), {x,0,m}], x]*Range[0,m]!] (* _G. C. Greubel_, May 21 2019 *)

%o (PARI) my(x='x + O('x^30)); Vec(serlaplace(1/(x+3-2*exp(x)))) \\ _Michel Marcus_, May 21 2019

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(3+x-2*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 21 2019

%o (Sage) m = 30; T = taylor(1/(3+x-2*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 21 2019

%Y Cf. A292933, A292934.

%K nonn,easy

%O 0,3

%A _Jean-Luc Marichal_, Sep 27 2017