login
a(n) = [x^n] 1/(1 + x/(1 - 2^n*x/(1 + 3^n*x/(1 - 4^n*x/(1 + 5^n*x/(1 - ...)))))), a continued fraction.
1

%I #4 Sep 29 2017 07:19:29

%S 1,-1,-3,167,262305,-19802585281,-111307539961183167,

%T 66192452118355875767376767,5609362049224731266886822845131449345,

%U -87773600779729250264394909974880988558750376171521,-318955450227538853365057634352430260175496937997604285602324132863

%N a(n) = [x^n] 1/(1 + x/(1 - 2^n*x/(1 + 3^n*x/(1 - 4^n*x/(1 + 5^n*x/(1 - ...)))))), a continued fraction.

%F a(n) = A291207(n,n).

%t Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^k k^n x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 10}]

%Y Main diagonal of A291207.

%Y Cf. A291333.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Sep 26 2017