Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 12 2024 20:44:09
%S 1,2,11,94,1083,15666,272451,5532206,128409707,3352959850,97259891163,
%T 3102552150006,107936130271899,4066743353318114,164961642651034547,
%U 7167348523420169278,332081754670735087275,16343667009638859878298,851478575825591156040843,46814697307371602567813126
%N a(n) = n! * [x^n] exp(n*x)/(2 - exp(x)).
%C The n-th term of the n-th binomial transform of A000670.
%H G. C. Greubel, <a href="/A292916/b292916.txt">Table of n, a(n) for n = 0..380</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = A292915(n,n).
%F a(n) ~ n! * 2^(n-1) / (log(2))^(n+1). - _Vaclav Kotesovec_, Sep 27 2017
%F a(n) = 2^n*A000670(n) - Sum_{k=0..n-1} 2^k*(n-1-k)^n. - _Seiichi Manyama_, Dec 25 2023
%p b:= proc(n, k) option remember; k^n +add(
%p binomial(n, j)*b(j, k), j=0..n-1)
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 27 2017
%t Table[n! SeriesCoefficient[Exp[n x]/(2 - Exp[x]), {x, 0, n}], {n, 0, 19}]
%t Table[HurwitzLerchPhi[1/2, -n, n]/2, {n, 0, 19}]
%o (PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
%o a(n) = 2^n*a000670(n)-sum(k=0, n-1, 2^k*(n-1-k)^n); \\ _Seiichi Manyama_, Dec 25 2023
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 50);
%o A292916:= func< n | Coefficient(R!(Laplace( Exp(n*x)/(2-Exp(x)) )), n) >;
%o [A292916(n): n in [0..30]]; // _G. C. Greubel_, Jun 12 2024
%o (SageMath) [factorial(n)*( exp(n*x)/(2-exp(x)) ).series(x,n+1).list()[n] for n in (0..30)] # _G. C. Greubel_, Jun 12 2024
%Y Main diagonal of A292915.
%Y Cf. A000670, A330603.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Sep 26 2017