Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 05 2018 08:03:11
%S 3,7,27,129,755,5187,40923,364333,3611811,39448095,470573723,
%T 6086754297,84847445907,1267953887899,20220829211355,342759892460517,
%U 6153802869270083,116652857267320503,2328215691932062491,48800672765792988145,1071780020853500289843
%N a(n) = -Sum_{k=1..3}(-1)^(n-k)*hypergeom([k, k-n-3], [], 1).
%F a(n) = A292898(3, n).
%F From _Vaclav Kotesovec_, Jul 05 2018: (Start)
%F Recurrence: (5*n^2 - 6*n + 4)*a(n) = (5*n^3 - n^2 - 6*n + 9)*a(n-1) + (n-1)*(5*n^2 + 4*n + 3)*a(n-2).
%F a(n) ~ 5*sqrt(Pi/2) * n^(n + 5/2) / exp(n+1). (End)
%p A292897 := n -> -add((-1)^(n-k)*hypergeom([k, k-n-3], [], 1), k=1..3):
%p seq(simplify(A292897(n)), n=0..20);
%t Table[-Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-n-3}, {}, 1], {k,1,3}], {n,0,20}] (* _Vaclav Kotesovec_, Jul 05 2018 *)
%Y Cf. A000166 (m=1), A259834 (m=2), this sequence (m=3), A292898 (m>=1).
%K nonn
%O 0,1
%A _Peter Luschny_, Oct 05 2017