login
Total number of words beginning with the first letter of an n-ary alphabet in all multisets of nonempty words with a total of n letters.
3

%I #10 Mar 19 2022 03:25:11

%S 0,1,5,37,415,6051,109476,2348767,58191451,1631827927,51029454163,

%T 1758883278967,66200568699170,2699977173047181,118561410689195358,

%U 5574984887552288475,279398986674750754195,14863338415349068099348,836304620387823727353480

%N Total number of words beginning with the first letter of an n-ary alphabet in all multisets of nonempty words with a total of n letters.

%H Alois P. Heinz, <a href="/A292873/b292873.txt">Table of n, a(n) for n = 0..382</a>

%e For n=2 and alphabet {a,b} we have 7 multisets: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}. There is a total of 5 words beginning with the first alphabet letter, thus a(2) = 5.

%p h:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(

%p (p-> p+[0, p[1]*j])(binomial(k^i+j-1, j)*h(n-i*j, i-1, k)), j=0..n/i)))

%p end:

%p a:= n-> `if`(n=0, 0, h(n$3)[2]/n):

%p seq(a(n), n=0..22);

%t h[n_, i_, k_] := h[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[ Function[p, p + {0, p[[1]]*j}][Binomial[k^i + j - 1, j]*h[n - i*j, i - 1, k]], {j, 0, n/i}]]];

%t a[n_] := If[n == 0, 0, h[n, n, n][[2]]/n];

%t Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Mar 19 2022, after _Alois P. Heinz_ *)

%Y Cf. A252654, A292845.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 25 2017