login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292838
Number of sets of nonempty words with a total of n letters over quaternary alphabet.
3
1, 4, 22, 132, 729, 4000, 21488, 113760, 594548, 3073392, 15732936, 79846448, 402104884, 2010879968, 9992425872, 49366096352, 242584319710, 1186177166680, 5773569726884, 27982357252632, 135079969593838, 649640609539360, 3113354757088720, 14871179093155424
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(4^j).
a(n) ~ 4^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(4^(m-1)-1)) = 0.147762663788961720137665013823002812172... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
MATHEMATICA
h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[h[n - i j, i - 1] Binomial[4^i, j], {j, 0, n/i}]]];
a[n_] := h[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A292804.
Sequence in context: A180899 A007195 A356283 * A193620 A321275 A274745
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved