OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Product_{j>=1} (1+x^j)^(4^j).
a(n) ~ 4^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(4^(m-1)-1)) = 0.147762663788961720137665013823002812172... - Vaclav Kotesovec, Sep 28 2017
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^i, j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..30);
MATHEMATICA
h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[h[n - i j, i - 1] Binomial[4^i, j], {j, 0, n/i}]]];
a[n_] := h[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2017
STATUS
approved