login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{k>=1} (1 + exp(-Pi*(2*k-1))).
6

%I #7 May 23 2022 06:42:04

%S 1,0,4,3,2,9,8,2,6,2,6,4,4,6,8,7,0,1,2,5,2,7,8,7,5,6,8,8,8,1,5,5,9,1,

%T 4,5,6,1,0,3,3,1,1,2,0,9,9,9,8,7,5,2,6,4,5,7,4,1,4,7,7,2,8,9,4,7,0,4,

%U 7,2,0,1,8,1,9,1,0,0,5,2,5,6,2,1,0,9,2,2,9,7,5,7,8,4,2,7,6,2,7,1,7,9,7,4,3

%N Decimal expansion of Product_{k>=1} (1 + exp(-Pi*(2*k-1))).

%D A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 757, section 6.2.3, formula 5.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>, formula 50.

%F Equals 2^(1/4) * exp(-Pi/24).

%F Equals A292820 / A292821.

%e 1.043298262644687012527875688815591456103311209998752645741477289470472...

%t RealDigits[2^(1/4) * E^(-Pi/24), 10, 120][[1]]

%Y Cf. A259148, A292820, A292824.

%Y Cf. A292827, A292829.

%K nonn,cons

%O 1,3

%A _Vaclav Kotesovec_, Sep 24 2017