login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that sigma(m)+phi(m) == 2 mod 4.
3

%I #17 Oct 09 2017 15:29:32

%S 1,3,5,6,7,10,11,13,14,17,19,20,22,23,26,27,29,31,34,37,38,40,41,43,

%T 45,46,47,52,53,54,58,59,61,62,67,68,71,73,74,79,80,82,83,86,89,90,94,

%U 97,101,103,104,106,107,109,113,116,117,118,122,127,131,134,136,137,139,142,146,148,149,151,153,157

%N Numbers m such that sigma(m)+phi(m) == 2 mod 4.

%C Union of {1}, A191217 and A292762.

%H Vincenzo Librandi, <a href="/A292763/b292763.txt">Table of n, a(n) for n = 1..5000</a>

%H N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, <a href="https://vimeo.com/237029685">Part I</a>, <a href="https://vimeo.com/237030304">Part 2</a>, <a href="https://oeis.org/A290447/a290447_slides.pdf">Slides.</a> (Mentions this sequence)

%t Do[If[Mod[DivisorSigma[1, n] + EulerPhi[n], 4]==2, Print[n]], {n, 1, 10^3}] (* _Vincenzo Librandi_, Oct 02 2017 *)

%o (PARI) isok(m) = ((sigma(m)+eulerphi(m)) % 4) == 2; \\ _Michel Marcus_, Oct 02 2017

%Y Cf. A000010, A000203.

%Y Cf. A191217, A292762.

%Y A065091 (odd primes) is a subsequence. - _Michel Marcus_, Oct 02 2017

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Sep 26 2017