login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n+5/8.
0

%I #30 Mar 11 2023 08:42:25

%S 1,-1,0,3,3,-51,-75,2253,1491,-192651,-187275,27071553,278562603,

%T -5649998901,-36187521825,1637735135403,25110810761403,

%U -628821435060051,-1403714584628625,308746181051792553,6294348598730683953,-188636884672112018601,-2161564244998001617125

%N Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n+5/8.

%D Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.1).

%H Chao-Ping Chen, Richard B. Paris, <a href="https://arxiv.org/abs/1511.09217">On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas</a>, arXiv:1511.09217 [math.CA], 2015. See (3.1).

%H N. Elezovic, L. Lin, L. Vukšic, <a href="http://dx.doi.org/10.7153/jmi-07-62">Inequalities and asymptotic expansions for the Wallis sequence and the sum of the Wallis ratio</a>, J. Math. Inequal. 7 (2013) 679-695. See p. 687.

%t Numerator[CoefficientList[Series[Gamma[n + 3/8]^2 / (2*Gamma[n - 1/8] * Gamma[n + 7/8]), {n, Infinity, 25}], 1/n]] (* _Vaclav Kotesovec_, Jun 02 2019 *)

%Y Cf. A292754.

%K sign

%O 0,4

%A _N. J. A. Sloane_, Sep 25 2017

%E a(2)=0 inserted by _Michel Marcus_, Jun 02 2019

%E More terms from _Vaclav Kotesovec_, Jun 02 2019