login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292698
Number of solutions to 3 +- 7 +- 13 +- 19 +- ... +- prime(4*n) = 0.
3
0, 0, 0, 1, 2, 8, 27, 83, 292, 944, 3279, 11291, 38992, 138066, 490248, 1757360, 6347321, 22998089, 83780199, 306819363, 1128999790, 4174251748, 15507225620, 57767819903, 215327188611, 803901214851, 3013081897103, 11331883386143, 42737620941612
OFFSET
1,5
LINKS
FORMULA
Constant term in the expansion of 1/2 * Product_{k=1..2*n} (x^prime(2*k) + 1/x^prime(2*k)).
EXAMPLE
For n = 4 the solution is 3 - 7 - 13 + 19 - 29 + 37 + 43 - 53 = 0.
MAPLE
s:= proc(n) s(n):= `if`(n=0, 0, ithprime(2*n)+s(n-1)) end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=0, 1,
(p-> b(n+p, i-1)+b(abs(n-p), i-1))(ithprime(2*i))))
end:
a:= n-> b(0, 2*n)/2:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 21 2017
MATHEMATICA
s[n_] := s[n] = If[n == 0, 0, Prime[2n] + s[n-1]];
b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 0, 1,
With[{p = Prime[2i]}, b[n+p, i-1] + b[Abs[n-p], i-1]]]];
a[n_] := b[0, 2n]/2;
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
PROG
(PARI) {a(n) = 1/2*polcoeff(prod(k=1, 2*n, x^prime(2*k)+1/x^prime(2*k)), 0)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 21 2017
STATUS
approved