login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of matchings in the n-Sierpinski tetrahedron graph.
1

%I #9 Jul 20 2024 17:18:08

%S 10,945,132820373046,49123375811021432878640796802876545882185505

%N Number of matchings in the n-Sierpinski tetrahedron graph.

%H Christian Sievers, <a href="/A292669/b292669.txt">Table of n, a(n) for n = 1..6</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>

%o (PARI) a(n)={my(s=[1,0,1,0,3]);for(k=2,n,s=vector(5,i,sum(wx=0,2,sum(wy=0,2,sum(wz=0,2,sum(xy=0,2,sum(xz=0,2,sum(yz=0,2,s[1+(i>1)+(wx%2)+(wy%2)+(wz%2)]*s[1+(i>2)+(wx\2)+(xy%2)+(xz%2)]*s[1+(i>3)+(wy\2)+(xy\2)+(yz%2)]*s[1+(i>4)+(wz\2)+(xz\2)+(yz\2)]))))))));[1,4,6,4,1]*s~} \\ _Christian Sievers_, Jul 20 2024

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Sep 20 2017

%E a(4) and beyond from _Christian Sievers_, Jul 20 2024