login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292632
a(n) = n! * [x^n] exp((n+2)*x)*(BesselI(0,2*x) - BesselI(1,2*x)).
5
1, 2, 10, 77, 798, 10392, 162996, 2991340, 62893270, 1490758022, 39334017996, 1143492521437, 36318168041260, 1251270023475864, 46481870133666792, 1852054390616046345, 78792796381529620710, 3564894013016856836190, 170921756533520140861020, 8657018996674423681277455, 461881087606113071895396420
OFFSET
0,2
COMMENTS
The n-th term of the n-th binomial transform of A000108.
LINKS
FORMULA
a(n) = [x^n] (sqrt(1 - n*x) - sqrt(1 - 4*x - n*x))/(2*x*sqrt(1 - n*x)).
a(n) = A271025(n,n).
a(n) ~ exp(2) * (BesselI(0,2) - BesselI(1,2)) * n^n. - Vaclav Kotesovec, Sep 20 2017
a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * n^(n-k). - Vaclav Kotesovec, Nov 23 2021
MATHEMATICA
Table[n!*SeriesCoefficient[E^((n+2)*x)*(BesselI[0, 2*x] - BesselI[1, 2*x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 20 2017 *)
Join[{1}, Table[Sum[Binomial[n, j] * CatalanNumber[j] * n^(n-j), {j, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 23 2021 *)
CROSSREFS
Main diagonal of A271025.
Sequence in context: A375876 A140763 A245307 * A095789 A134980 A355471
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 20 2017
STATUS
approved