login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * [x^n] exp(n*x)*(BesselI(0,2*x) + BesselI(1,2*x)).
2

%I #8 Sep 20 2017 20:01:52

%S 1,2,10,75,758,9660,148772,2688420,55784710,1307378358,34158527852,

%T 984547901051,31034429035260,1062081192039140,39218355263626632,

%U 1554260970293874135,65803396940022289734,2964120950479432183950,141548149894016562758300,7143010414313948156920665,379821534884560034711455956

%N a(n) = n! * [x^n] exp(n*x)*(BesselI(0,2*x) + BesselI(1,2*x)).

%C The n-th term of the n-th binomial transform of A001405.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = A292630(n,n).

%F a(n) ~ (BesselI(0,2) + BesselI(1,2)) * n^n. - _Vaclav Kotesovec_, Sep 20 2017

%t Table[n!*SeriesCoefficient[E^(n*x)*(BesselI[0,2*x] + BesselI[1,2*x]),{x,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Sep 20 2017 *)

%Y Main diagonal of A292630.

%Y Cf. A001405, A186925, A292629, A292632.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Sep 20 2017