login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).
5

%I #17 Aug 29 2018 18:05:00

%S 0,1,-1,3,4,12,21,34,56,75,115,141,204,238,329,372,496,549,711,775,

%T 980,1056,1309,1398,1704,1807,2171,2289,2716,2850,3345,3496,4064,4233,

%U 4879,5067,5796,6004,6821,7050,7960,8211,9219,9493,10604,10902,12121,12444,13776,14125,15575

%N Expansion of x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).

%C The n-th generalized n-gonal number (for n >= 5).

%H Alois P. Heinz, <a href="/A292551/b292551.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F G.f.: x*(1 - 2*x + x^2 + 7*x^3 - x^4)/((1 - x)^4*(1 + x)^3).

%F a(n) = [x^n] x*(1 + (n - 4)*x + x^2)/((1 - x)^3*(1 + x)^2).

%F E.g.f.: (1/16)*((-6 + 9*x + 2*x^2)*exp(-x) + (6 - 5*x + 4*x^2 + 2*x^3)*exp(x)).

%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).

%F a(n) = (2*n^3 - 2*n^2 + (-1)^n*(2*n^2 - 11*n - 6) - 5*n + 6)/16.

%p a:= n-> (m-> m*((n-2)*m-(n-4))/2)(-ceil(n/2)*(-1)^n):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Aug 29 2018

%t CoefficientList[Series[x (1 - 2 x + x^2 + 7 x^3 - x^4)/((1 - x)^4 (1 + x)^3), {x, 0, 50}], x]

%t Table[SeriesCoefficient[x (1 + (n - 4) x + x^2)/((1 - x)^3 (1 + x)^2), {x, 0, n}], {n, 0, 50}]

%t LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, -1, 3, 4, 12, 21}, 51]

%t Table[(2 n^3 - 2 n^2 + (-1)^n (2 n^2 - 11 n - 6) - 5 n + 6)/16, {n, 0, 50}]

%o (PARI) x='x+O('x^99); concat(0, Vec(x*(1-2*x+x^2+7*x^3-x^4)/((1-x)^4*(1+x)^3))) \\ _Altug Alkan_, Sep 18 2017

%o (GAP) List([0..50],n->(2*n^3-2*n^2+(-1)^n*(2*n^2-11*n-6)-5*n+6)/16); # _Muniru A Asiru_, Aug 08 2018

%Y Cf. A006484, A060354, A100119, A195152.

%Y Main diagonal of A303301.

%K easy,sign

%O 0,4

%A _Ilya Gutkovskiy_, Sep 18 2017