The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292502 L.g.f.: Sum_{n>=1} [ Sum_{k>=1} (2*k-1)^n * x^k ]^n / n. 3

%I #16 Oct 17 2020 07:39:10

%S 1,7,43,399,6091,151255,6550307,465127199,58293976795,12191724780647,

%T 4471204259257363,2799295142330495151,3026340345288168023883,

%U 5704756586858875194533367,18287793731664040419412785283,103736521111190203113027053903423,990788254951454647260121962687606203,16859931481746848392491523248553253264263,481447154976629475966161111465088882379644147

%N L.g.f.: Sum_{n>=1} [ Sum_{k>=1} (2*k-1)^n * x^k ]^n / n.

%C A060187(n,k) = Sum_{j=1..k} (-1)^(k-j) * binomial(n,k-j) * (2*j-1)^(n-1).

%C L.g.f. equals the logarithm of the g.f. of A292500.

%C Conjecture: a(n)^(1/n^2) tends to 3^(1/4). - _Vaclav Kotesovec_, Oct 17 2020

%H Paul D. Hanna, <a href="/A292502/b292502.txt">Table of n, a(n) for n = 1..130</a>

%F L.g.f.: Sum_{n>=1} [ Sum_{k=0..n} A060187(n+1,k+1) * x^k ]^n / (1-x)^(n^2+n) * x^n/n, where A060187 are the Eulerian numbers of type B.

%e L.g.f: A(x) = x + 7*x^2/2 + 43*x^3/3 + 399*x^4/4 + 6091*x^5/5 + 151255*x^6/6 + 6550307*x^7/7 + 465127199*x^8/8 + 58293976795*x^9/9 + 12191724780647*x^10/10 + 4471204259257363*x^11/11 + 2799295142330495151*x^12/12 + 3026340345288168023883*x^13/13 + 5704756586858875194533367*x^14/14 + ...

%e The l.g.f. A(x) equals the series:

%e A(x) = Sum_{n>=1} (x + 3^n*x^2 + 5^n*x^3 + ... + (2*k-1)^n*x^k + ...)^n/n,

%e or,

%e A(x) = (x + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 + ...) +

%e (x + 3^2*x^2 + 5^2*x^3 + 7^2*x^4 + 9^2*x^5 + ...)^2/2 +

%e (x + 3^3*x^2 + 5^3*x^3 + 7^3*x^4 + 9^3*x^5 + ...)^3/3 +

%e (x + 3^4*x^2 + 5^4*x^3 + 7^4*x^4 + 9^4*x^5 + ...)^4/4 + ...

%e This logarithmic series can be written using the Eulerian numbers of type B like so:

%e A(x) = (x + x^2) / (1-x)^2 +

%e (x + 6*x^2 + x^3)^2 / (1-x)^6/2 +

%e (x + 23*x^2 + 23*x^3 + x^4)^3 / (1-x)^12/3 +

%e (x + 76*x^2 + 230*x^3 + 76*x^4 + x^5)^4 / (1-x)^20/4 +

%e (x + 237*x^2 + 1682*x^3 + 1682*x^4 + 237*x^5 + x^6)^5 / (1-x)^30/5 +

%e (x + 722*x^2 + 10543*x^3 + 23548*x^4 + 10543*x^5 + 722*x^6 + x^7)^6 / (1-x)^42/6 +

%e (x + 2179*x^2 + 60657*x^3 + 259723*x^4 + 259723*x^5 + 60657*x^6 + 2179*x^7 + x^8)^7 / (1-x)^56/7 + ... +

%e [ Sum_{k=0..n} A060187(n+1,k+1) * x^k ]^n / (1-x)^(n^2+n) * x^n/n + ...

%e Exponentiation yields the g.f. of A292500:

%e exp(A(x)) = 1 + x + 4*x^2 + 18*x^3 + 122*x^4 + 1382*x^5 + 26992*x^6 + 967860*x^7 + 59207134*x^8 + 6539607238*x^9 + 1225903048760*x^10 + 407719392472476*x^11 + 233686070341415140*x^12 + 233030334505100451484*x^13 + 407716349332865096406960*x^14 + ... + A292500(n)*x^n + ...

%e which is an integer series.

%o (PARI) {A060187(n, k) = sum(j=1, k, (-1)^(k-j) * binomial(n, k-j) * (2*j-1)^(n-1))}

%o {a(n) = my(A=1, Oxn=x*O(x^n));

%o A = sum(m=1, n+1, sum(k=0, m, A060187(m+1, k+1)*x^k)^m /(1-x +Oxn)^(m^2+m) * x^m/m );

%o n*polcoeff(A, n)}

%o for(n=1, 30, print1(a(n), ", "))

%o (PARI) {a(n) = n*polcoeff( sum(m=1, n+1, sum(k=1, n, (2*k-1)^m * x^k +x*O(x^n))^m/m ), n)}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A292500, A276750, A060187.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 17 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 05:29 EDT 2024. Contains 373423 sequences. (Running on oeis4.)