%I #10 Dec 08 2017 16:57:58
%S 0,1,2,7,121,79988,81600798165,182421074243967704954243
%N a(0) = 0, a(1) = 1; a(n) = prime(a(n-1))*a(n-1) + a(n-2).
%e +---+-------------+--------------------+-------------------+
%e | n | a(n)/a(n+1) | Continued fraction | Comment |
%e +---+-------------+--------------------+-------------------+
%e | 1 | 1/2 | [0; 2] | 2 = prime(a(1)) |
%e +---+-------------+--------------------+-------------------+
%e | 2 | 2/7 | [0; 3, 2] | 3 = prime(a(2)) |
%e +---+-------------+--------------------+-------------------+
%e | 3 | 7/121 | [0; 17, 3, 2] | 17 = prime(a(3)) |
%e +---+-------------+--------------------+-------------------+
%e | 4 | 121/79988 | [0; 661, 17, 3, 2] | 661 = prime(a(4)) |
%e +---+-------------+--------------------+-------------------+
%t RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Prime[a[n - 1]] a[n - 1] + a[n - 2]}, a[n], {n, 7}]
%Y Cf. A000040, A000278, A006277, A007097, A036247, A036248, A058182, A076146, A083659.
%K nonn,more
%O 0,3
%A _Ilya Gutkovskiy_, Dec 08 2017