Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 16 2017 17:11:05
%S 1,2,10,72,670,7896,113572,1939028,38463550,869985586,22098989952,
%T 622728621984,19271496576612,649553583740576,23680212403186584,
%U 928276782505698920,38931911577966732814,1739307919812511213916,82457732209611432170734
%N Expansion of Product_{k>=1} ((1 + k^k*x^k)/(1 - k^k*x^k)).
%H Seiichi Manyama, <a href="/A292406/b292406.txt">Table of n, a(n) for n = 0..386</a>
%F Convolution of A023882 and A265949.
%F a(n) ~ 2*n^n * (1 + 2*exp(-1)/n + (exp(-1) + 10*exp(-2))/n^2). - _Vaclav Kotesovec_, Sep 16 2017
%t nmax = 20; CoefficientList[Series[Product[(1 + k^k*x^k)/(1 - k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 16 2017 *)
%Y Cf. A023882, A265949, A292407.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Sep 15 2017