The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292393 Base-n digit k involved in anomalous cancellation in the proper fraction A292288(n)/A292289(n). 3
 1, 1, 3, 1, 5, 1, 7, 4, 6, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 8, 12, 1, 23, 6, 15, 13, 9, 1, 29, 1, 31, 12, 18, 17, 7, 1, 37, 19, 13, 1, 41, 1, 43, 11, 24, 1, 47, 8, 21, 20, 17, 1, 53, 12, 15, 20, 30, 1, 59, 1, 61, 31, 9, 16, 13, 1, 67, 24, 23, 1, 71, 1, 73, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS For prime base p, (p + 1)/(p^2 + p) simplifies to 1/p by canceling digit k = 1 in the numerator and denominator. This fraction is written "11/110" in base p and simplifies to "1/10" = 1/p. See link "Base-b proper fractions n/d having nontrivial anomalous cancellation, with 2 <= b <= 120 and d <= b^2 + b" at A292289 for more information. - Michael De Vlieger, Sep 18 2017 LINKS Michael De Vlieger, Table of n, a(n) for n = 2..120 Eric W. Weisstein, Anomalous Cancellation FORMULA a(p) = 1. a(p + 1) = p. EXAMPLE a(10) = 6, since A292288(10)/A292289(10) = 16/64 = 1/4; we can "cancel" k = 6 in the numerator and the denominator and obtain 1/4 anomalously. a(12) = 11, since A292288(12)/A292289(12) = 23/138 = "1b/b6" in base 12, where "b" represents digit 11. This fraction simplifies to 1/6. Digit "b" = 11 is canceled and "anomalously" yields 1/6. a(16) = 5, since A292288(16)/A292289(16) = 21/84 = hexadecimal "15/54". This fraction simplifies to 1/4. We can "cancel" k = 5 in the numerator and denominator and obtain 1/4 anomalously. Table relating a(n) with A292288(n) and A292289(n). n = base and index. N = A292288(n) = smallest numerator that pertains to D. D = A292289(n) = smallest denominator that has a nontrivial anomalous cancellation in base n. n/d = simplified ratio of numerator N and denominator D. k = a(n) = base-n digit anomalously canceled in the numerator and denominator to arrive at N/D. .    n     N       D   N/D       k   ------------------------------    2     3       6   1/2       1    3     4      12   1/3       1    4     7      14   1/2       3    5     6      30   1/5       1    6    11      33   1/3       5    7     8      56   1/7       1    8    15      60   1/4       7    9    13      39   1/3       4   10    16      64   1/4       6   11    12     132   1/11      1   12    23     138   1/6      11   13    14     182   1/13      1   14    27     189   1/7      13   15    22     110   1/5       7   16    21      84   1/4       5   17    18     306   1/17      1   18    35     315   1/9      17   19    20     380   1/19      1   20    39     390   1/10     19 MATHEMATICA Table[Intersection[IntegerDigits[#1, b], IntegerDigits[#2, b]] & @@ Flatten@ Catch@ Do[If[Length@ # > 0, Throw[#], #] &@ Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ], {m, b, b^2 + b}], {b, 2, 30}] // Flatten (* Michael De Vlieger, Sep 15 2017 *) CROSSREFS Cf. A292288 (numerators), A292289 (denominators). Sequence in context: A322993 A118402 A122383 * A136180 A095112 A160596 Adjacent sequences:  A292390 A292391 A292392 * A292394 A292395 A292396 KEYWORD nonn,base AUTHOR Michael De Vlieger, Sep 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)