login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292367 Carmichael numbers c with record number of primes p such that c*p is also a Carmichael number. 0
561, 1729, 41041, 1615681, 14676481, 40622401, 173085121, 367804801, 631071001, 8494657921, 138399075361, 432081216001, 997803878401, 3837165696001, 7599525373441, 42182344790209, 65032633451521, 186137387251201, 329797704600001, 2523853463040001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If c*p is a Carmichael number, where p is a prime, then (p-1)|(c-1), so given c, the number of possible primes is bounded by the number of divisors of c-1.

The corresponding number of solutions is 0, 5, 7, 10, 12, 14, 18, 26, 30, 33, 55, 65, 71, 72, 90, 92, 112, 128, 192, 218.

LINKS

Table of n, a(n) for n=1..20.

EXAMPLE

1729 has 5 prime numbers p: 37, 73, 109, 433 and 577, such that 1729*p: 63973, 126217, 188461, 748657 and 997633 are also Carmichael numbers.

MATHEMATICA

carmichaelQ[n_] := Not[PrimeQ[n]] && Divisible[n - 1, CarmichaelLambda[n]];

numSol[n_] := Module[{m = 0}, ds = Divisors[n-1]; Do[p = ds[[k]] + 1; If[! PrimeQ[p], Continue[]]; If[!carmichaelQ[p*n], Continue[]]; m++, {k, 1, Length[ds] - 1}]; m]; numSolmax=-1; seq={}; Do[n=A002997[[j]]; m=numSol[n]; If[m>numSolmax, AppendTo[seq, n]; numSolmax=m], {j, 1, Length[A002997]}]; seq

CROSSREFS

Cf. A002997.

Sequence in context: A227976 A224930 A083732 * A290805 A217465 A097130

Adjacent sequences:  A292364 A292365 A292366 * A292368 A292369 A292370

KEYWORD

nonn

AUTHOR

Amiram Eldar, Sep 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 08:54 EDT 2020. Contains 333313 sequences. (Running on oeis4.)