login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = Sum_{k=1..n} lcm(a(k),n)/n.
0

%I #8 Sep 15 2017 11:43:26

%S 1,1,2,4,4,12,9,33,50,78,99,173,264,658,570,1056,1099,4113,2443,10129,

%T 18866,23226,39775,102665,171529,256039,610467,815809,1795028,3854202,

%U 3044396,10752800,5509162,22665306,25847226,66558954,25219183,167266731,264535960,163511658,346473322,1109093102

%N a(1) = 1; a(n+1) = Sum_{k=1..n} lcm(a(k),n)/n.

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>

%F a(1) = 1; a(n+1) = Sum_{k=1..n} a(k)/gcd(a(k),n).

%e a(1) = 1;

%e a(2) = lcm(a(1),1)/1 = lcm(1,1)/1 = 1;

%e a(3) = lcm(a(1),2)/2 + lcm(a(2),2)/2 = lcm(1,2)/2 + lcm(1,2)/2 = 2;

%e a(4) = lcm(a(1),3)/3 + lcm(a(2),3)/3 + lcm(a(3),3)/3 = lcm(1,3)/3 + lcm(1,3)/3 + lcm(2,3)/3 = 4, etc.

%t a[1] = 1; a[n_] := a[n] = Sum[LCM[a[k - 1], n - 1]/(n - 1), {k, 2, n}]; Table[a[n], {n, 42}]

%t a[1] = 1; a[n_] := a[n] = Sum[a[k - 1]/GCD[a[k - 1], n - 1], {k, 2, n}]; Table[a[n], {n, 42}]

%Y Cf. A056147, A057661, A286946, A287006.

%K nonn

%O 1,3

%A _Ilya Gutkovskiy_, Sep 14 2017