login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of vertices of type B at level n of the hyperbolic Pascal pyramid.
1

%I #20 Apr 19 2019 11:45:41

%S 0,0,0,3,12,36,99,264,696,1827,4788,12540,32835,85968,225072,589251,

%T 1542684,4038804,10573731,27682392,72473448,189737955,496740420,

%U 1300483308,3404709507,8913645216,23336226144,61095033219,159948873516,418751587332,1096305888483

%N Number of vertices of type B at level n of the hyperbolic Pascal pyramid.

%H Colin Barker, <a href="/A292291/b292291.txt">Table of n, a(n) for n = 0..1000</a>

%H László Németh, <a href="http://arxiv.org/abs/1511.02067">Hyperbolic Pascal pyramid</a>, arXiv:1511.0267 [math.CO], 2015 (2nd line of Table 1).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,1).

%F a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 4.

%F G.f.: 3*x^3 / ((1 - x)*(1 - 3*x + x^2)). - _Colin Barker_, Sep 17 2017

%F a(n) = 3*Fibonacci(2*n - 3) - 3 for n > 0. - _Ehren Metcalfe_, Apr 18 2019

%t CoefficientList[Series[3*x^3/((1 - x)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 17 2017 *)

%t LinearRecurrence[{4,-4,1},{0,0,0,3},40] (* _Harvey P. Dale_, Oct 25 2017 *)

%o (PARI) concat(vector(3), Vec(3*x^3 / ((1 - x)*(1 - 3*x + x^2)) + O(x^40))) \\ _Colin Barker_, Sep 17 2017

%Y Cf. A264236.

%K nonn,easy

%O 0,4

%A _Eric M. Schmidt_, Sep 13 2017