login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.
3

%I #15 Sep 18 2017 17:27:07

%S 6,12,14,30,33,56,60,39,64,132,138,182,189,110,84,306,315,380,390,174,

%T 272,552,564,155,402,360,259,870,885,992,1008,405,624,609,258,1406,

%U 1425,754,530,1722,1743,1892,1914,504,1120,2256,2280,399,1065,1037,897,2862

%N Smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.

%C See comments at A291093.

%C For prime base p, (p + 1)/(p^2 + p) simplifies to 1/p by cancelling digit k = 1 in the numerator and denominator. This fraction is written "11/110" in base p and simplifies to "1/10" = 1/p.

%C Smallest base b for which n/d, simplified, has a numerator greater than 1 is 51.

%H Michael De Vlieger, <a href="/A292289/b292289.txt">Table of n, a(n) for n = 2..120</a>

%H Michael De Vlieger, <a href="/A292289/a292289.txt">Base-b proper fractions n/d having nontrivial anomalous cancellation, with 2 <= b <= 120 and d <= b^2 + b.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AnomalousCancellation.html">Anomalous Cancellation</a>

%F a(p) = p^2 + p.

%e a(5) = 30, the corresponding numerator is 6; these are written "11/110" in quinary, cancelling a 1 in both numerator and denominator yields "1/10" which is 1/5. 6/30 = 1/5.

%e Table of smallest values correlated with least numerators:

%e b = base and index.

%e n = smallest numerator that pertains to d.

%e d = smallest denominator that has a nontrivial anomalous cancellation in base b (this sequence).

%e n/d = simplified ratio of numerator n and denominator d.

%e k = base-b digit cancelled in the numerator and denominator to arrive at n/d.

%e b-n+1 = difference between base and numerator plus one.

%e b^2-d = difference between the square of the base and denominator.

%e .

%e b n d n/d k b-n+1 b^2-d

%e -----------------------------------------

%e 2 3 6 1/2 1 0 -2

%e 3 4 12 1/3 1 0 -3

%e 4 7 14 1/2 3 2 2

%e 5 6 30 1/5 1 0 -5

%e 6 11 33 1/3 5 4 3

%e 7 8 56 1/7 1 0 -7

%e 8 15 60 1/4 7 6 4

%e 9 13 39 1/3 4 3 42

%e 10 16 64 1/4 6 5 36

%e 11 12 132 1/11 1 0 -11

%e 12 23 138 1/6 11 10 6

%e 13 14 182 1/13 1 0 -13

%e 14 27 189 1/7 13 12 7

%e 15 22 110 1/5 7 6 115

%e 16 21 84 1/4 5 4 172

%t Table[SelectFirst[Range[b, b^2 + b], Function[m, Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ] != {}]], {b, 2, 30}] (* _Michael De Vlieger_, Sep 13 2017 *)

%Y Cf. A291093/A291094, A292288 (numerators), A292393 (digit that is canceled).

%K nonn,frac,base

%O 2,1

%A _Michael De Vlieger_, Sep 13 2017