login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cliques in the n-Menger sponge graph.
0

%I #10 Sep 13 2017 11:13:29

%S 45,1073,22977,471809,9534465,191475713,3835805697,76766445569,

%T 1535731564545,30717852516353,614382820130817,12287862561046529,

%U 245758900488372225,4915191203906977793,98303929631255822337,1966079437050046578689

%N Number of cliques in the n-Menger sponge graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Clique.html">Clique</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MengerSpongeGraph.html">Menger Sponge Graph</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (29, -188, 160).

%F a(n) = 3*20^n - 2*8^n + 1.

%F a(n) = 29*a(n-1) - 188*a(n-2) + 160*a(n-3).

%F G.f.: x*(-45 + 232*x - 320*x^2)/(-1 + 29*x - 188*x^2 + 160*x^3).

%t Table[3 20^n - 2 8^n + 1, {n, 20}]

%t LinearRecurrence[{29, -188, 160}, {45, 1073, 22977}, 20]

%t CoefficientList[Series[(-45 + 232 x - 320 x^2)/(-1 + 29 x - 188 x^2 + 160 x^3), {x, 0, 20}], x]

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Sep 11 2017