Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 11 2017 13:30:20
%S 1,1,3,13,63,361,2499,20581,196311,2116561,25357563,333765037,
%T 4787007855,74323701817,1242253733619,22243082373301,424815246293319,
%U 8620744969300321,185235767397027627,4201390722798810493,100309092062158564959,2514646421630798317897,66041388198395188082595,1813259146315114344920581,51950114633383773360554679,1550392693763071812557794801,48120508780248064233484223067
%N E.g.f. C(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that C'(x) = C(x) + 2*A(x)*B(x).
%C Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively.
%C Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x).
%H Paul D. Hanna, <a href="/A292183/b292183.txt">Table of n, a(n) for n = 0..300</a>
%F E.g.f. C(x) and related functions A(x) and B(x) satisfy:
%F (1a) A(x)^2 + B(x)^2 = C(x)^2.
%F (1b) B(x)^2 - A(x)^2 = exp(x)^2.
%F (1c) C(x)^2 - 2*A(x)^2 = exp(x)^2.
%F (2a) A(x) = Integral A(x) + B(x)*C(x) dx.
%F (2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
%F (2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
%F (3a) A(x) = exp(x) * sinh( Integral C(x) dx ).
%F (3b) B(x) = exp(x) * cosh( Integral C(x) dx ).
%F (3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx).
%F (3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2).
%F (4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ).
%F (4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ).
%F (4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ).
%F Limit A292183(n)/A292181(n) = sqrt(2).
%F Limit A292183(n)/A292182(n) = sqrt(2).
%e E.g.f.: C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +...
%e where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
%e RELATED SERIES.
%e A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +...
%e where A(x) = Integral A(x) + B(x)*C(x) dx.
%e B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +...
%e where B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
%e Squares of series.
%e A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +...
%e where A(x)^2 + B(x)^2 = C(x)^2.
%e B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +...
%e where B(x)^2 - A(x)^2 = exp(2*x).
%e C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +...
%e where C(x)^2 - 2*A(x)^2 = exp(2*x).
%o (PARI) {a(n) = my(A=x,B=1,C=1); for(i=0,n, A = intformal(A + B*C + x*O(x^n));
%o B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(C,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A292181 (A), A292182 (B).
%K nonn
%O 0,3
%A _Paul D. Hanna_, Sep 10 2017