login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292124
E.g.f. D(x) = A(x)*B(x)*C(x) where A(x), B(x), and C(x) are the e.g.f.s of A292121, A292122, and A292123, respectively.
5
6, 49, 336, 3608, 39984, 568456, 8788224, 157119872, 3070910976, 66631838464, 1568964182016, 40143982850048, 1104238186174464, 32575797728674816, 1024499039235538944, 34244972509718085632, 1211785683371470749696, 45266987105529337544704, 1779867330217651806928896, 73484865365862823153369088, 3178359543535472461866860544, 143720321925324472350632574976
OFFSET
0,1
LINKS
FORMULA
E.g.f. D(x) = A(x)*B(x)*C(x) and related functions A(x), B(x), and C(x) satisfy:
(1a) D(x) = A(x)*A'(x).
(1b) D(x) = B(x)*B'(x).
(1c) D(x) = C(x)*C'(x).
(2a) A(x)^2 = 1 + Integral 2*D(x) dx.
(2b) B(x)^2 = 4 + Integral 2*D(x) dx.
(2c) C(x)^2 = 9 + Integral 2*D(x) dx.
(3a) A(x) = 1 + Integral B(x)*C(x) dx.
(3b) B(x) = 2 + Integral A(x)*C(x) dx.
(3c) C(x) = 3 + Integral A(x)*B(x) dx.
(4a) B(x)^2 - A(x)^2 = 3.
(4b) C(x)^2 - A(x)^2 = 8.
(4c) C(x)^2 - B(x)^2 = 5.
(5a) A(x)^m = 1 + Integral m * D(x) * A(x)^(m-2) dx.
(5b) B(x)^m = 2^m + Integral m * D(x) * B(x)^(m-2) dx.
(5c) C(x)^m = 3^m + Integral m * D(x) * C(x)^(m-2) dx.
EXAMPLE
E.g.f. D(x) = 6 + 49*x + 336*x^2/2! + 3608*x^3/3! + 39984*x^4/4! + 568456*x^5/5! + 8788224*x^6/6! + 157119872*x^7/7! + 3070910976*x^8/8! + 66631838464*x^9/9! + 1568964182016*x^10/10! +...
where D(x) = A(x)*B(x)*C(x).
Related series.
A(x) = 1 + 6*x + 13*x^2/2! + 102*x^3/3! + 653*x^4/4! + 7134*x^5/5! + 80257*x^6/6! + 1138638*x^7/7! + 17577977*x^8/8! + 314204406*x^9/9! + 6141247573*x^10/10! +...
where A(x)*A'(x) = D(x).
B(x) = 2 + 3*x + 20*x^2/2! + 78*x^3/3! + 736*x^4/4! + 6672*x^5/5! + 83360*x^6/6! + 1113072*x^7/7! + 17810944*x^8/8! + 311847168*x^9/9! + 6167567360*x^10/10! +...
where B(x)*B'(x) = D(x).
C(x) = 3 + 2*x + 15*x^2/2! + 82*x^3/3! + 759*x^4/4! + 6698*x^5/5! + 83355*x^6/6! + 1111018*x^7/7! + 17804811*x^8/8! + 311922962*x^9/9! + 6167999175*x^10/10! +...
where C(x)*C'(x) = D(x).
PROG
(PARI) {a(n) = my(A=1, B=2, C=3); for(i=0, n, A = 1 + intformal(B*C +x*O(x^n)); B = 2 + intformal(A*C); C = 3 + intformal(A*B)); n!*polcoeff(A*B*C, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A292120 (A+B+C), A292121 (A), A292122 (B), A292123 (C).
Sequence in context: A027766 A097299 A283226 * A104170 A098306 A055847
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2017
STATUS
approved